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Abstract. The existence of electronic states in aperiodic chain+both the generalized Fibonacci 
(GD chain with the inflation rule ( A  AmB”. B + A )  and the generalized “hue-Morse (GIMI 
( A  + AmBn, B + B’A”’) chain-is proved analytically. “here might be a critical value .L 
for the OF chain. If the ratio VA/ VB is p a t e r  than .L where VA and VB are the potentials in 
the OF hopping Hamiltonian, our numerical calculation seems to show that the extended stale 
will vanish. 

Quasi-periodic and aperiodic chains have been the subject of great interest since the 
experimental discover of the quasicrystal (Schechtman et al 1984) and the recent advent 
of new experimental techniques in the fabrication of high-quality superlattices including 
quasi-periodic ones (Merlin et al 1985, Karkut et al 1986). The quasi-periodic Fibonacci 
(QF) chain has been studied in great detail. It is conskucted using the following inflation 
rule: 

A - t  A B  B - t A  

where A or B is a symbol such as the atom or distance etc. According to this inflation rule, 
the Fibonacci chain can be generated as follows. 

l : S i = B  

2 : S z = A  

3 : S3 = A B  = SzSi 

4 : S, = A B A  = S3S2 

5 : Ss 

6 : S6 = A B A A B A B A  = S5S4 

A B A A B  = S4S3 
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Some generalized Fibonacci (GF) chains have also been introduced in many studies using 
the inflation rule 

A -+ AmBn B -+ A.  (2) 

This can also be written as 

sk+l=S$'f .z-l  k > , 2  S l = B , S z = A .  (3) 

The specific names of some GF chains are defined as follows. 

n = l , m  = 1 : 

n = l , m  = 2 :  

n = 1,m = 3 :  

n = 2 , m  = 1 : 

n = 3,171 = 1 : 

Golden mean or Fibonacci chain 

Silver mean 

Bronze mean 

Copper mean 

Nickel mean. 

The total number of symbols ( A  and B )  in the kth level of the GF chain is denoted by a OF 
number F k .  This must satisfy the following equation: 

F k + i  = mFk +nFk-i Fi = 1, Fz = 1. (4) 

The ratio U = limk,, F k + l / F k  can be found from the following equation: 

u = i [ m  t &'FTZ]. (5 )  

For example: ug = 1/2[1+ &] for the golden mean and us = 1 + f i  for the silver mean. 
It is known that OF chains with n = 1 are quasi-periodic and that those with n > 2 will be 
aperiodic. 

Another type of aperiodic chain is the Thue-Morse (TM) chain and its extensions-the 
generalized TM (GTM) chain-have also been studied with much interest. Its inflation rule 
is 

A -+ AmB" B -+ B"Am. (6) 

When n = 1 and m = 1, the chain is simply called the TM chain and it is given by 

SI = A  

& = A B  

S3 = A B B A  

S, = A B B A B A A B  

S, = A B B A B A A B B A A B A B B A  

.. 
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Let us define SI = B .  Starting from 31 and the inflation rule ( A  -+ AB and B -+ BA) ,  
we can also construct the following sequence: 

S, = B A  

S, = B A .  A B  = S2.s, 
$4 = B A A B .  A B B A  = 8 . s ~  

Obviously, the 3, can be obtained from the Sk by changing A to B and B to A and the TM 
sequence can be written simply as 

Similarly, the GTM chain can be conshucted without any difficulty. The number of 
symbols in the GTM chain is Fk = (m + n)' and the ratio U = m + n. 

The physical properties of onedimensional quasi-periodic and aperiodic systems are 
very different from periodic as well as disordered systems. They also appear to be in the 
intermediate level between them. For example, the electronic spectrum of a periodic system 
consists of absolutely continuous bands and the wavefunctions are all periodic (a special 
type of extended states). A one-dimensional disorder system has a pure point spectrum and 
exclusively exponentially localized states. However, the Fibonacci lattice has a Cantor set 
spectrum with zero Lebesgue measure and exclusively critical states (cs) which are neither 
localized (Ls) nor extended (ES) in the ordinary sense (Kohmoto et ai 1987). Numerical 
calculation indicated the existence of Ls, cs and ES in the nickel GF chain with (m = 1, 
n = 3) (Severin and Riklund 1989) and an analytical proof showed that the existence of 
LS and even periodic states in the GF chain with the inflation rule SL+~ = S ~ - , S I .  (Everin 
et al 1989). Numerical results showed that the LS can exist in the chain with copper mean 
(m = 1, n = 2) and cs in chains with golden and silver means (m = 2, n = 1) (Gumbs 
and Ali 1988). TM chains show crystal-like hopping conduction (Aldea and Dulea 1988) 
and extended electronic states (Riklund et af 1987). The existence of ES in the TM chain 
(m = 1, n = 1) was proved analytically and the low bound of the fraction of the Es is at 
least f win et al 1991). 

In this paper, we would extend the proof of the existence of ES to more general cases 
for the GF (n 2) and GTM chains. The model of the electronic Hamiltonian is 

@"+I + @"-I+ Vn$n E@n, (9) 

If we define 

equation (1) will become 
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where M ( n )  is defined by 

M ( n )  = (";" -'> 0 

and det(M) = 1. The elements of matrix M ( n )  are MII  = E -  V,, Mlz = -1, MZI = I and 
MZz = 0. In the vibration problem, instead of E - V., the Mil will be (2 -p.Qz - 1). Let 
us denote the total transfer mabix for the Eth-level Sl as M I .  Any two-dimensional matrix 
a with det(a) = 1 must have following equations: 

a' = x a  - 1 

a' = d&)a - dx-l(x)l 

x = Tr(a) (11) 

where dk is a second kind of Chebyshev's polynomial and satisfies the following recursion 
relations (Kolar and Ali 1990, Kolar et al  1991): 

dkti (x)  = x & ( x )  - d k - ~ ( x )  

d&)=O d i ( x ) = l  d z ( x ) = x  d 3 ( x ) = x 2 - I  

d4(x) = x3 - 2s,. . . d*(x) = O  du,+i(X) = (-l)w. (12) 

1. OF chain 

Since the inflation rule is Sktl = SrSi-, for a OF chain where Sw is the kth-level GF chain, 
the recursion relation of the transfer matrix is 

Mktl = M ; - l M r  k 2 2. (13) 

In general, the higher level transfer matrix of the GF chain must be constructed from two 
lower level mabices Mk-1 and Mk: 

MN = M,v(Mk-i,  Mw) N 2 k + 1. (14) 

Sometimes, the aperiodic property in an infinite chain might be changed sensitively by 
introducing the approximation of a periodic boundary condition. Therefore, we will work 
carefully without introducing a periodic approximation. In the case of n 2 2, if there is 
energy E (or Q in a vibrating system) to give d,(xk) = 0, we must have dn-l(xw)z = 1 and 
dn-I(xk) = &l by means of the following relation for Chebyshev's polynomial (Kolar and 
Ali 1990): 

+ d , = d !  +d&tr(dr+i - & I ) .  (15) 

Then 

Mi = d,(xk)Mw - dn-i(xw)I = &Z (16) 
Mwtz = [ ~ w l " [ ~ k + l l m  = w f k + l l "  

MN = f(Mw, Mw+i) = f ( Z ?  Mw+i) = f(Mw+i) 
= & M E l  N 2 k + 1. (17) 
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Table 1. Percentage of u i s .  

n =2. m = I ,  v, = 1.0. v2 = 2.0 
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k R ( k )  NumberafEs ES% 

3 3 2 66.7 
4 8 5 62.5 
5 19 12 63.15 
6 40 25 62.50 
7 a3 52 62.65 
8 168 105 62.50 
9 339 212 62.54 

where Qp is an integer number. There are F,+k+l mahices including both the MA(= +Z) 
and Mx+l. An infinite aperiodic system means N --f 00. Since detMk+l = 1, the 
eigenvalues q of &+I can be found from 

r?-Xk+lfJ+l  = o  

Vi = I/Z{Xk+l f J(xE+l -4)l. 

After transforming the basis, the transfer matrix M N  becomes 

If IXk+l  I 6 2, we will have 

vi = exp{=kiO). 

Therefore, 

This means that the modulus of the wavefunction will not vanish at FN-~+I  points 
aperiodically distributed along the whole chain and the ratio of the points in the chain 

will have two real roots: A+ > 1 and another at A- < 1 .  In this case, the states appear 
localized. So, the roots [ E i }  of d,(xk) = 0 will yield some energies of states in which 
some will be extended if Ixk+l(Ei)l 6 2 and some might be localized if Ix~+t(Ei)l > 2. As 
an example, we have done the calculations for the case n = 2, m = 1 .  Since & ( x )  = x ,  
xk = 0 yields the condition d2(xk) = 0. The solutions of the equation {E i ]  have been solved 
numerically for many different values of k and Va where VI is fixed at one. For example, 
in the case of V2 = 2.5, x3(E) = 0 gives three roots: El = -0.402255 8. E2 = 1.433 2540 
and E3 = 3.4690018. They yield ~q(E1) = -0.0977442, Xq(E2) = -1,9332540 and 
xq(E3) = -3.969001 8. This means that the state with energy El or E2 must be extended. 
We have solved the higher-level equations xk(E) = 0 up to k = 9 where the number of 
solutions of xk(E) = 0 is 5 for k = 4, 1 1  for k = 5, 21 for k = 6, 43 fork = 7, 85 for 
k = 8 and 171 fork = 9. The total number of roots is 339 and denoted by R(k = 9). Then 
we check the value of xk+](Ei) for each root of xk(Ei) = 0 so that we can judge whether 
it is extended and estimate the percentage of extended states (ES%) in the totaI number of 
roots. Table 1 gives the results from ow numerical calculations. We have found that ES% 
is about 62.5% and the convergence of ES% seems very fast. 

is q = F N - ~ + I / F N  = Thus such States mUSt be extended. If IXr+i(Ei)l > 2, we 
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Figures 1-3 show the relations of xp+l(E) - E where the E is one of the roots from 
equation x k ( E )  = 0, figure 4 the density of states for 339 roots in the case of n = 2, m = 1, 
VI = 1 .O, V2 = 2.0 and figure 5 the Es% - V2. From figures 1 4 ,  we can see that there are 
some gaps in the energy states and a mobility edge which seems to be at the boundary of 
a gap. ESW decreases and the gap, as well as the number of gaps, increase with increasing 
V,. The critical value of VZ is near 4.403 so that there might be no ES when V 2  2 4.403. 
Thus, the existence of ES in some aperiodic GF chains (n > 2, any m) has been proved when 
V,/V1 does not exceed some critical value. The case VI > V2 is similar. Meanwhile, we 
have also checked the case of the periodic chain (VI = Vz) by means of the above method. 
The calculations always show that all states are exactly extended in any case. 

I . '. . 2.- 

"1 
-4 
4.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

E 
Figure 1. The relation befwecn x ( E )  and E for the case of n = 2. ,n = 1. VI = 1.0 and 
vz = 1.5. 

2. GTM Chain 

From the inflation rule for the GTM 

&+I = I A ~ l " [ W  &+I = [&l"[Axl" 

the recursion equation of the transfer mamx must be 

where 61 = M(1). M1 = M ( 2 ) .  Obviously, we have 

Tr(Mp) = Tr(& 
xp = Tr(Mk) .?A = Tr(&) 

k > 2 
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Xk+i(E) 

-4 

xk+l@) 
. . . . . . . . . . . . . . . . . . . . .  

-1.0 -0.2 0.6 1.4  2.2 3.0 3.8 4.6 5.4 6.2 7.0 
E 

Figure 3. The relation between x ( E )  and E for the case of n = 2. m = I ,  Vi = 1.0 and 
v2 = 4.403. 

In the case of m = 1, n = 1, we have proved the lower bound of the existence of Ess (Lin 
et ai 1991). The more general case will be discussed in this paper. The Nth-level transfer 
matrix MN of the GTM chain can be expressed by any two lower level ones: h f k  and I?&. 

If we set l i k l  = 2, the lXkl will dso be 2 due to equation (21). Matrices llik and h f k  can 
be transformed to fl by a unitary transformation. From the equation i i k  = 0, we can 
determine the energies { E t ] ,  For those { E i ) ,  we obtain 

MN = & I .  I ... ~ . . I  = + I ,  (23) 
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I 
45 

-1.0 -0.5 0.0 0.5 1.0 1 . 5  2.0 2.5 3.0 3.5 4.0 

E 

Figure 4. The distribution of densily of slates for the case of n = 2, m = I. VI = 1.0 and 
vz = 2.0. 

40 30 1 
" 
1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 

v2 

Figure 5. The percentage of extended slates for different values of Vz, where VI = 1.0. 

The number of I s  in equation (23) must be FN-k = (n + m)N-X so that the wavefunction 
will have F N - k  locations periodically distributed in the chain without any decay. Therefore, 
the properties of the GTM chain are more similar to those of a periodic chain even though its 
structure is aperiodic which seems more similar to disorder than to a quasi-periodic chain. 
The existence of ES in the CTM chain has been proved. 

In conclusion, we have proven the existence of ESS in the CF chain with n 2 2 and any 
GTM chain. Some evidence shows that there might be a critical value Ac. If the value of 
the ratio &/VI  > A,, there is no ES for the GF chain. 
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