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Received 6 September 1993, in final form 7 April 1994

Abstract, The existence of electronic states in aperiedic chains—both the generalized Fibonacci
(GF) chain with the inflation rule (A - A™B" B — A) and the generalized Thue-Morse (GT™M)
(A = A™B" B — B"A™) chain—is proved analytically, There might be a critical value A.
for the GF chain. If the ratio V4 / Vg is greater than A, where V4 and Vp are the potentials in
the GF hopping Hamiltonian, our numerical calculation seems to show that the extended state
will vanish,

Quasi-periedic and aperiodic chains have been the subject of great interest since the
experimental discover of the quasicrystal (Schechtman et al 1984) and the recent advent
of new experimental techniques in the fabrication of high-quality superlattices including
quasi-periodic ones (Merlin et al 1985, Karkut ef al 1986). The quasi-periodic Fibonacci
(QF) chain has been studied in great detail. It is constructed using the following inflation

rule:

A-> AB B— A

where A or B is a symbol such as the atom or distance etc. According to this inflation rule,
the Fibonacci chain can be generated as follows.
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Some generalized Fibonacci (GF) chains have also been introduced in many studies using
the inflation rule

A— A"EB" B A. 2)
This can also be written as
St = Sg - i1 k22 S$i=B,5=A 3)

The specific names of some GF chains are defined as follows.

n=1m=1: Golden mean or Fibonacci chain
n=1,m=2: Silver mean

n=1,m=73; Bronze mean

n=2m=1: Copper mean

n=3m=1: Nickel mean.

The total number of symbols (A and B) in the kth level of the GF chain is denoted by a GF
number F. This must satisfy the following equation:

Frpi=mF+nFy Fi=1FR=1. (4}

The ratio ¢ = limy_, o Fys1/Fi can be found from the following equation:

o =1im+vm?+4nl (5)

For example: o, = 1/2[1+ /3] for the golden mean and o; = 1 + /2 for the silver mean.
It is known that GF chains with n = 1 are quasi-periodic and that those with n > 2 will be
aperiodic.

Another type of aperiodic chain is the Thue-Morse (TM) chain and its extensions—the
generalized TM (GTM) chain—have also been studied with much interest. Its inflation rule
is

A — A™B" B - B"A™, (6)

When 1 = 1 and m = 1, the chain is simply called the T™ chain and it is given by

S =4
S, = AB
S: = ABBA

S; = ABBABAAER
S; = ABBABAABBAABABEBA

0
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Let us define §; = B. Starting from S and the inflation rule (A — AB and B — BA),
we can also construct the following sequence:

Sy =BA
$55=BA-AB=5,-5
S.=BAAB-ABBA=S:-5;

§k = Sk...lsk_l . (8

Obviously, the S can be obtained from the §; by changing A to B and B to A and the ™
sequence can be written simply as

St = Sk—18k1 k 2 2).

Similarly, the GTM chain can be constructed without any difficulty. The number of
symbols in the GTM chain is F; = {m + n)* and the ratio o == m 4 n.

The physical properties of one-dimensional quasi-periodic and aperiodic systems are
very different from periodic as well as disordered systems. They also appear to be in the
intermediate level between them. For example, the electronic spectrum of a periodic system
consists of absolutely continuous bands and the wavefunctions are all periodic (a special
type of extended states). A one-dimensional disorder system has a pure point spectrum and
exclusively exponentially localized states. However, the Fibonacci lattice has a Cantor set
spectrum with zero Lebesgue measure and exclusively critical states (CS) which are neither
localized (L$) nor extended (E$) in the ordinary sense (Kohmoto et gf 1987). Numerical
calculation indicated the existence of LS, €S and ES in the nickel GF chain with (m = 1,
n = 3) (Severin and Riklund 1989) and an analytical proof showed that the existence of
LS and even periodic states in the GF chain with the inflation rule S, = SE_ISL (Evenin
et al 1989). Numerical results showed that the LS can exist in the chain with copper mean
(m =1, n = 2) and CS in chains with golden and silver means (m = 2, n = 1) {Gumbs
and Ali 1988). TM chains show crystal-like hopping conduction (Aldea and Dulea 1988)
and extended electronic states (Riklund ef al 1987). The existence of ES in the TM chain
(m = 1, n = 1) was proved analytically and the low bound of the fraction of the ES is at
least § (Lin et al 1991).

In this paper, we would extend the proof of the existence of ES to more general cases
for the GF (n = 2) and GTM chains. The model of the electronic Hamiltonian is

\!fnrH + wlt—l + Vn\bn = EWH- (9)

‘b":(wf:)

equation (1) will become

If we define

Vo1 = M()ths (10)
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where M (n} is defined by

M(n) = (E—l v ‘01)

and det(M) = 1. The elements of matrix M(r) are M); = E—V,, M3 =1, My =1 and
My, = 0. In the vibration problem, instead of E — V,, the My; will be (2 — u,$2% — 1). Let
us denote the total transfer matrix for the Ith-level $; as M;. Any two-dimensional matrix
a with det{g) = 1 must have following equations:

a=xa—1
a* = di(x)a — dy—1 ()]
x = Trla) (i)

where d, is a second kind of Chebyshev’s polynomial and satisfies the following recursion
relations (Kolar and Ali 1990, Kolar et al 1991):

drp1(x) = xdp(x) — dp 1 (x)
do(x) =0 di(x) =1 da(x) = x dy(x) =x*—1
da(x) = x° — 2x, ... do(x) =0 o () = (—D*. {(12)

1. GF chain

Since the inflation rule is S = §¢°5;_; for 2 GF chain where S; is the kth-level GF chain,
the recursion relation of the transfer matrix is

My =Ml MP k22 (13)

In general, the higher level transfer matrix of the GF chain must be constructed from two
lower level matrices My, and M,:

My = My(My_1, Mp) Nzk+1. (14)

Sometimes, the aperiodic property in an infinite chain might be changed sensitively by
introducing the approximation of a periodic boundary condition. Therefore, we will work
carefully without introducing a periodic approximation. In the case of » 2 2, if there is
energy E (or §2 in a vibrating system) to give d, (x;) = 0, we must have d,—;(x;)* = 1 and
dy_1(xx) = &1 by means of the following relation for Chebyshev's polynomial (Kolar and
Ali 1990):

dg.;.z + dqz =d’ +dydy(di — diy). (15)
Then

My =dy ()M — dar ()] = £ (16)
Myya = [M ][ Mi)]” = £ [ My ]”
My = f(My, Misa) = f, Myyy) = F(Miy)

=+ME, NZ2k+1. (17
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Table 1. Percentage of ESs.

n=3im=1Vi=10 V=20

k R(k) Number of E5 E5%
3 3 2 66.7
4 8 5 62.5
5 19 12 63.15
6 40 25 62.50
7 83 52 62.65
g 168 105 62.50
9 339 212 62.54

where @, is an integer number. There are Fy_xq1 matrices including both the M (= +1)
and M;4,. An infinite aperiodic system means N — ©o. Since detM; = 1, the
eigenvalues n of My, can be found from

N~ X +1=0

ne = 1/2n1 £,/ (7, — D} (18)

After transforming the basis, the transfer matrix My becomes

0
n 0
MN:(J n?-)

If [xpe1] € 2, we will have

14+ = exp{Lif}.

¢ 0
MN = ( 0 e_ige) .

This means that the modulus of the wavefunction will not vanish at Fy_z4; points
aperiodically distributed along the whole chain and the ratic of the points in the chain
is § = Fy_is1/Fy = o~**!, Thus such states must be extended. If |xp41(E)| > 2, we
will have two real roots: A, > 1 and another at A_ < 1. In this case, the states appear
localized. So, the roots {E;} of d,(x;) = 0 will yield some energies of states in which
some will be extended if |x;.1{E;)] € 2 and some might be localized if |xp41(E;)| > 2. As
an example, we have done the calculations for the case n = 2, m = 1. Since da2(x) = x,
X = 0 yields the condition d2(x;) = 0. The solutions of the equation {E;} have been solved
numerically for many different values of k and Vo where V) is fixed at one. For example,
in the case of V5 = 2.5, x3(E) = 0 gives three roots: E; = —0.4022558, £, = 1.4332540
and E; = 3.4690018. They yvield x4(E|) = =0.097744 2, x4(E») = —1.9332540 and
x4(E3) = —3.969001 8. This means that the state with energy E; or E; must be extended.
We have sclved the higher-level equations x;(E)} = 0 up to & = 9 where the number of
solutions of x)(E) =0isS5fork =4, 11 fork=35,21 for k= 6,43 fork =17, 85 for
k=8 and 171 for k = 9. The total number of roots is 339 and denoted by R(k = 9). Then
we check the value of x;(E;) for each root of x,(E;} = 0 so that we can judge whether
it is extended and estimate the percentage of extended states (ES%) in the total number of
roots, Table 1 gives the resvits from our numerical calculations. We have found that ES%
is about 62.5% and the convergence of ES% seems very fast.

Therefore,
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Figures 1-3 show the relations of x,41(E) ~ E where the E is one of the roots from
equation x,(E) = 0, figure 4 the density of states for 339 roots inthe caseof n =2, m = 1,
Vi = 1.0, V3 = 2.0 and figure 5 the ES% ~ V,. From figures 1-4, we can see that there are
some gaps in the energy states and a mobility edge which seems to be at the boundary of
a gap. E3% decreases and the gap, as well as the number of gaps, increase with increasing
V,. The critical value of V; is near 4.403 so that there might be no ES when V, > 4.403,
Thus, the existence of ES in some aperiodic GF chains (» > 2, any m) has been proved when
Va/ V) does not exceed some critical value. The case Vi > Vz is similar. Meanwhile, we
have also checked the case of the periodic chain (Vi = V4) by means of the above method,
The caiculations always show that al] states are exactly extended in any case.

Fe®

T T T T T

L "\ . n=2, m=1, VI=1.0, V2=l 5 ]

Al o e . e M- -

-4 S IS [N N Y W [N TN DO S AN S SN T [ N S
L0 05 0D 05 10 15 20 25 30 35 4.0
E
Figure 1. The relation between x(E) and £ forthe case of n = 2, m = 1, V| = 1.0 and
Vo= 1.5
2. GTM chain

From the inflation rule for the GTM
Arg1 = [AR]"[B]" Bpyy = [Be]'[Ak]™ (19)

the recursion equation of the traasfer matrix must be

M = MM M = AP k2 (20)
where M, = M(1), M; = M(2). Obviously, we have
Tr(Mz) = Te(M,) k22 (21)

= Tr(My) R = Te(My). (22)
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Figure 2. The relation between x{E) and E forthecase of n =2, m = |, V| = 1.0 and
Vo =20
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Figure 3. The relation between x(E) and £ forthe case of n = 2, m = I, Vy = 1.0 and
Vs = 4.403.

In the case of m = 1, # = 1, we have proved the lower bound of the existence of ESs (Lin
et al 1991). The more general case will be discussed in this paper. The Nth-level transfer
matrix My of the GTM chain can be expressed by any two lower level ones: M; and M;.
If we set |%| = 2, the Jx;| will also be 2 due to equation (21). Matrices M; and M, can
be transformed to I by a unitary transformation. From the equation M; = 0, we can
determine the energies {E;}. For those {E;}, we obtain

My==xI-1:vr. =41 (23)
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Figure 4. The distribution of density of states for the case of n =2, m = 1, ¥ = 1.0 and
Vo =20.
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Figure 5, The percentage of extended states for different values of Vi, where V| = 1.0

The number of Is in equation (23) must be Fy_; = (n + m)"¥~* so that the wavefunction
will have Fy_; locations periodically distributed in the chain without any decay. Therefore,
the properties of the GTM chain are more similar to those of a periodic chain even though its
structure is aperiodic which seems more similar to disorder than to a quasi-periodic chain,
The existence of ES in the GTM chain has been proved.

In conclusion, we have proven the existence of ESs in the GF chain with # 2 2 and any
GTM chain. Some evidence shows that there might be a critical value A;. If the value of
the ratio Vo / Vi = X, there is no ES for the GF chain.
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